赛瓦定理的逆定理的证明

赛瓦定理的逆定理的证明

题目
赛瓦定理的逆定理的证明
答案
O为△ABC内任一点,AO延交BC于D,
BO延交AC于E,CO延交AB于F,则(AF/BF)•(BD/CD)•(CE/AE)=1,见图4.
证明:在△AOB中,OF分∠AOB,由《分角定理》→
AF/BF=(sin∠AOF/sin∠BOF)•(AO/BO),
同理,在△BOC,△COA中也有.∴
(AF/BF)•(BD/CD)•(CE/AE)= (sin∠AOF/sin∠BOF)•(AO/BO) •(sin∠BOD/sin∠COD)•(BO/CO)
•(sin∠COE/sin∠AOE)•(CO/AO)=1(由对顶角相等).
不添线,只列一式.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.