如图所示,设过△OAB重心G的直线与边OA、OB分别交于点P、Q,设向量OP=h向量OA,向量OQ=k向量OB.求证:1/h+1/k=3

如图所示,设过△OAB重心G的直线与边OA、OB分别交于点P、Q,设向量OP=h向量OA,向量OQ=k向量OB.求证:1/h+1/k=3

题目
如图所示,设过△OAB重心G的直线与边OA、OB分别交于点P、Q,设向量OP=h向量OA,向量OQ=k向量OB.求证:1/h+1/k=3
证明:延长OG交边AB与M,则M为AB边中点,
∴向量OM=(向量OA+向量OB)/2=(向量OP/h+向量OQ/k)/2=向量OP/2h+向量OQ/2k.
又向量OM=3向量OG/2,∴向量OG=(1/3h)向量OP+(1/3k)向量OQ.
∵P、Q、G三点共线,且向量OP、向量OQ是不共线的向量.
∴1/3h+1/3k=1,即1/h+1/k=3
疑问:
P、Q、G三点共线,且向量OP、向量OQ是不共线的向量.
怎么得到的
1/3h+1/3k=1,即1/h+1/k=3
答案
这里用到一个结论:已知O,P,Q是不共线的三点,且向量OG=mOP+nOQ,若P,G,Q三点共线,求证m+n=1.【证明】设G分PQ的比是λ,则有PG=λGQ,OG-OP=λ(OQ-OG)OG=OP+λOQ-λOG(1+λ)OG=OP+λOQOG=OP/(1+λ)+λOQ/(1+λ)与OG=mOP+...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.