不定积分:e^x(sinx)^2dx

不定积分:e^x(sinx)^2dx

题目
不定积分:e^x(sinx)^2dx
答案
sin²x=(1/2)(1-cos2x)
∫ e^xsin²x dx
=(1/2)∫ e^x(1-cos2x) dx
=(1/2)∫ e^x dx - (1/2)∫ e^xcos2x dx
=(1/2)e^x - (1/2)∫ e^xcos2x dx
下面单独计算
∫ e^xcos2x dx
=∫ cos2x de^x
分部积分
=e^xcos2x + 2∫ e^xsin2xdx
=e^xcos2x + 2∫ sin2xde^x
再分部
=e^xcos2x + 2e^xsin2x - 4∫ e^xcos2x dx
将-4∫ e^xcos2x dx移到左边与左边合并后除以系数
∫ e^xcos2x dx
=(1/5)e^xcos2x + (2/5)e^xsin2x + C
代回到原积分得:
∫ e^xsin²x dx
=(1/2)e^x - (1/2)∫ e^xcos2x dx
=(1/2)e^x - (1/10)e^xcos2x - (1/5)e^xsin2x + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.