1已知等腰三角形一腰上高与底边成45°腰长为2厘米求面积
题目
1已知等腰三角形一腰上高与底边成45°腰长为2厘米求面积
2勾股定律公式
3在直角三角形中 一个如锐角30°斜边与较小直角边和为18cm求斜边长
4如图 ----|----------|
| |一人测河深竹竿插在离岸1.5m远河底,竹竿高出水面0.5m再把竹竿
| |拉到岸边顶与河面相齐 计算河深
| |
____|______|
5问:边长满足关系(a-b)(a的平方+b的平方-c的平方)=0的三角形ABC是什么三角形
答案
1.就是等腰直角三角形,面积为2平方厘米
2.a^2+b^2=c^2 c是直角斜边,a,b是直角边(a^2表示a的平方)
3.30°所对边即较小直角边,由于30°所对边为斜边的一半,即斜边+1/2*斜边=18,所以斜边=12cm
4.设竹竿长a米,可以找到一个直角三角形(a-0.5)^2+1.5^2=a^2
a=2.5m,所以河深2m
5.等腰三角形(a=b)或直角三角形(a^2+b^2-c^2=0)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点