设a、b、c、d都是正数,abcd=1,则a4+2*b4+4*c4+8*d4的最小值是多少?(字母后面的4表示4次方)

设a、b、c、d都是正数,abcd=1,则a4+2*b4+4*c4+8*d4的最小值是多少?(字母后面的4表示4次方)

题目
设a、b、c、d都是正数,abcd=1,则a4+2*b4+4*c4+8*d4的最小值是多少?(字母后面的4表示4次方)
答案
既然abcd都是正数,而且知道四个数的积为常数,所以直接连续用基本不等式就行了
原式>=2√2*a2*b2+2√32*c2*d2>=8√2*a*b*c*d
所以最小值应该是8√2

至于下面那位仁兄怎么算出来的4.说实话我真不知道.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.