如图,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,且BE=CF,若EF与BC相交于D,求证:DE=DF.

如图,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,且BE=CF,若EF与BC相交于D,求证:DE=DF.

题目
如图,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,且BE=CF,若EF与BC相交于D,求证:DE=DF.
答案
证明:作FH∥AB交BC延长线于H,
∵FH∥AB,
∴∠FHC=∠B.
又∵AB=AC,
∴∠B=∠ACB.
又∵∠ACB=∠FCH,
∴∠FHE=∠FCH.
∴CF=HF.
又∵BE=CF,
∴HF=BE.
又∵FH∥AB,
∴∠BED=∠HFD,
在△DBE与△FHE中,
∠B=∠FHC
BE=HF
∠BED=∠HFD

∴△DBE≌△FHE(ASA).
∴DE=DF.
作FH∥AB交BC延长线于H,构造全等三角形:△DBE和△DHF,由平行线的性质得出两对内错角相等,只需要再证一组边对应相等,根据已知条件,以及所作平行线,可证出HF=BE,三角形全等可证.

全等三角形的判定与性质;等腰三角形的性质.

本题考查了全等三角形的判定和性质;主要是作辅助线,利用了等边对等角,等角对等边,还有全等三角形的判定和性质.正确作出辅助线是解决本题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.