设函数f(x)=ax+x分之4,曲线y=f(x)在点p(1,a+4)处切线的斜率为-3,求a的值;函数f(x)在区间[1,8]的最大值与最小值.

设函数f(x)=ax+x分之4,曲线y=f(x)在点p(1,a+4)处切线的斜率为-3,求a的值;函数f(x)在区间[1,8]的最大值与最小值.

题目
设函数f(x)=ax+x分之4,曲线y=f(x)在点p(1,a+4)处切线的斜率为-3,求a的值;函数f(x)在区间[1,8]的最大值与最小值.
答案
f'(x)=a-4/x^2
f'(1)=a-4=-3,a=1
令f'(x)=1-4/x^2=0,得x=2或-2.
在区间[1,8]上,f(2)=4,f(1)=5,f(8)=17/2
所以,最大值是f(8),最小值是f(2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.