设数列{an}是一个公差不为零的等差数列,且a1=4,a3=6,是否存在无穷等比数列{a(nk)},n1=1,n2=3,使该数列中每项都是{an}中的项,为什么?.
题目
设数列{an}是一个公差不为零的等差数列,且a1=4,a3=6,是否存在无穷等比数列{a(nk)},n1=1,n2=3,使该数列中每项都是{an}中的项,为什么?.
答案
等差数列{an}的通项公式:an=n+3,即4,5,6,...(所有>3的自然数)
等比数列{ank}的通项公式:
an1 = a1 = 4
an2 = a3 = 6
ank = 4*(1.5)^k-1
故an3 = 9,an4 = 13.5 (非自然数)
故不存在这样的等比数列.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点