求解微分方程 [y-x(x^2+y^2)]dx-xdy=0

求解微分方程 [y-x(x^2+y^2)]dx-xdy=0

题目
求解微分方程 [y-x(x^2+y^2)]dx-xdy=0
答案
设y=xu
则y'=u+xu'
代入原方程得:
[xu-x(x^2+u^2x^2)]-x(u+xu')=0
即x+u^2x+u'=0
-xdx=du/(1+u^2)
积分:
-x^2/2+C=arctanu
u=tan(c-x^2/2)
y=xu=xtan(c-x^2/2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.