试证明(p-1)!模p的余数是p-1的充要条件是p为质数.

试证明(p-1)!模p的余数是p-1的充要条件是p为质数.

题目
试证明(p-1)!模p的余数是p-1的充要条件是p为质数.
答案
p=2,命题显然成立; p=3,命题显然成立; 对于奇质数p>=5,令a∈A={2,3,4.p-2},(其内每个元素都与p互质)则B={a,2a,3a,.,(p-1)a}中不会有对于除数p同余的两个数;事实上αa,βa∈B,αa≡βa(mod p),则a|α-β|能被p整除...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.