已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N. 求证:四边形AMNE是菱形.
题目
已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.
答案
证明:∵AD⊥BC,
∴∠BDA=90°,
∵∠BAC=90°,
∴∠ABC+∠C=90°,∠ABC+∠BAD=90°,
∴∠BAD=∠C,
∵AN平分∠DAC,
∴∠CAN=∠DAN,
∵∠BAN=∠BAD+∠DAN,∠BNA=∠C+∠CAN,
∴∠BAN=∠BNA,
∵BE平分∠ABC,
∴BE⊥AN,OA=ON,
同理:OM=OE,
∴四边形AMNE是平行四边形,
∴平行四边形AMNE是菱形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点