计算∫∫∫xy²z³dxdydz,其中积分体为是由曲面z=xy与平面y=x,x=1和z=0所围成的闭区域

计算∫∫∫xy²z³dxdydz,其中积分体为是由曲面z=xy与平面y=x,x=1和z=0所围成的闭区域

题目
计算∫∫∫xy²z³dxdydz,其中积分体为是由曲面z=xy与平面y=x,x=1和z=0所围成的闭区域
答案
原积分=[∫(0->1) xdx] *[∫(0->x) y^2dy] *[∫(0->xy) z^3dz]
=1/364
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.