cos√(n+1) -cos√n 求n趋向无穷大时的极限

cos√(n+1) -cos√n 求n趋向无穷大时的极限

题目
cos√(n+1) -cos√n 求n趋向无穷大时的极限
答案
用和差化积公式和分子有理化技巧:
an=cos√(n+1)-cos√n
=-2sin{[√(n+1)+√n]/2}sin{[√(n+1)-√n]/2}
=-2sin{[√(n+1)+√n]/2}sin{1/[2√(n+1)+2√n]}
第一项是有界量,第二项随着n趋于无穷是趋于0的,
因此极限是0.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.