已知函数f(x)=x^3+ax^2+bx+c,且以曲线y=f(x)上的点P(1,f(1))为切点的切线方程为y=3x+z
题目
已知函数f(x)=x^3+ax^2+bx+c,且以曲线y=f(x)上的点P(1,f(1))为切点的切线方程为y=3x+z
若函数y=f(x)在区间[-2,1]上单调递增 求b的取值范围
切线方程打错了 是y=3x+1
答案
1,求导 f'(x)=3x^2+2ax+b
2,令X=1.f'(1)=3+2a+b=3~1
f1=4=3+a+b+c~2
123 可 得
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点