已知n阶矩阵A满足A^3=2E 其中E为n阶单位矩阵 若B=A^2+A.证明B可逆,并求B的逆矩阵

已知n阶矩阵A满足A^3=2E 其中E为n阶单位矩阵 若B=A^2+A.证明B可逆,并求B的逆矩阵

题目
已知n阶矩阵A满足A^3=2E 其中E为n阶单位矩阵 若B=A^2+A.证明B可逆,并求B的逆矩阵
答案
B(A-E)=(A^2+A)(A-E)=A^3-E=2E-E=E
所以B可逆,逆为A-E
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.