初等数论 裴蜀定理相关

初等数论 裴蜀定理相关

题目
初等数论 裴蜀定理相关
怎么求ax+by=(a,b)的根?最好别用矩阵 要使用请介绍一些相关知识
答案
用辗转相除(欧几里得算法).
形式的描述比较麻烦,但是从例子很好理解.
比如a = 60,b = 86.
1) 带余除法b = a+26,余数c = 26;
2) 带余除法a = 2c+8,余数d = 8;
3) 带余除法c = 3d+2,余数e = 2;
4) 带余除法d = 4e,余数为0,这说明(a,b) = e = 2.
5) 逆推e = c-3d
= c-3(a-2c) = 7c-3a
= 7(b-a)-3a = 7b-10a.
因此x = -10,y = 7就是ax+by = e = (a,b)的一组解.
6) 写出通解x = b'k-10,y = 7-a'k,其中a' = a/(a,b),b' = b/(a,b).
即x = 43k-10,y = 7-30k.
简单总结就是辗转相除得到最大公约数,
再用过程中得到的等式逆推回去,得到用a,b表示(a,b)的等式,就找到一组解.
最后写出通解即可.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.