.已知数列的前n项之和为Sn=n2+3n,求证{an}为等差数列,若Sn=n2+3n+1呢?

.已知数列的前n项之和为Sn=n2+3n,求证{an}为等差数列,若Sn=n2+3n+1呢?

题目
.已知数列的前n项之和为Sn=n2+3n,求证{an}为等差数列,若Sn=n2+3n+1呢?
答案
由Sn=n^2+3n得
S(n-1)=(n-1)^2+3(n-1),两式相减,考虑到Sn-S(n-1)=an得
an=2n-1+3=2n+4,于是得
a(n-1)=2(n-1)+4,两式相减得
an-a(n-1)=2,故{an}为等差数列.
如果Sn=n2+3n+1,则
S(n-1)=(n-1)^2+3(n-1)+1,两式相减得
an-a(n-1)=2,故{an}仍为等差数列.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.