已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3)/2,求f(x)的最值
题目
已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3)/2,求f(x)的最值
已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3)/2,求f(x)的最大值和最小值.
答案
f(x)=asinx+bcosx
∫【x=0→π/2】f(x)dx=∫【x=0→π/2】(asinx+bcosx)dx
=a∫【x=0→π/2】sinxdx+b∫【x=0→π/2】cosxdx
=a【x=0→π/2】-cosx+b【x=0→π/2】sinxdx
=a[-cos(π/2)+cos0]+b(sin(π/2)-sin0)
=a+b
依题意,有:
a+b=4……………………………………………………(1)
∫【x=0→π/6】f(x)dx=∫【x=0→π/6】(asinx+bcosx)dx
=a∫【x=0→π/6】sinxdx+b∫【x=0→π/6】cosxdx
=a【x=0→π/6】-cosx+b【x=0→π/6】sinxdx
=a[-cos(π/6)+cos0]+b(sin(π/6)-sin0)
=a(2-√3)/2+(b√3)/2
=a+√3(b-a)/2
依题意,有:
a+√3(b-a)/2=(7-3√3)/2……………………………………(2)
由(1)得:a=4-b……………………………………………(3)
代(3)入(2),有:
4-b+√3[b-(4-b)]/2=(7-3√3)/2
4-b+√3(2b-4)/2=(7-3√3)/2
(√3-1)b+4-2√3=7/2-(3/2)√3
(√3-1)b=(√3-1)/2
b=1/2
代入(3),有:a=4-1/2
解得:a=7/2
所以:f(x)=(7/2)sinx+(1/2)cosx
f(x)=(1/2)(7sinx+cosx)
f(x)=[√(7^2+1^2)/2]{[7/√(7^2+1^2)]sinx+[1/√(7^2+1^2)]cosx}
f(x)=[(√50)/2][(7/√50)sinx+(1/√50)cosx]
不妨设:7/√50=cosα,则:1/√50=sinα
代入上式,有:
f(x)=[(√50)/2](cosαsinx+sinαcosx)
f(x)=[(√50)/2]sin(x+α)
f(x)=[(5√2)/2]sin(x+α)
因为:-1≤sin(x+α)≤1
所以:-(5√2)/2≤[(√50)/2]sin(x+α)≤(5√2)/2
即:-(5√2)/2≤f(x)≤(5√2)/2
因此:f(x)的最大值是(5√2)/2,最小值是-(5√2)/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 求下列二次函数图像顶点的坐标,函数的最大值和最小值 y=2x²-8x+1 y=-x²+2x+4
- 已知半圆面积为9/2π,求这个半圆的直径.
- 我碰巧遇到了他英语怎么说?
- 判断题“0度的角和360度的角一样大”?
- 合并同类项问题(要求写出正确格式和过程)
- sin14°cos16°+cos14°sin16°的值是( ) A.32 B.12 C.32 D.1
- 诸侯军救巨鹿下者十余壁,莫敢纵兵. 翻译
- Dale is tall and thin 对tall and thin 划线提问( ) Dale (
- 粗盐提纯使用的玻璃仪器有
- 高压锅是生活中一种密闭的加热容器.锅盖中央有一出气孔,孔上盖有限压阀,当锅内气压达到限定值时,限压阀被锅内顶起放出部分气体,实现了对锅内气体压强的控制.如图所示,某高压锅锅体的内底面积为S,侧壁竖直,