求下列微分方程通解 (1+e^x/y)dx+e^x/y(1-x/y)dy=0

求下列微分方程通解 (1+e^x/y)dx+e^x/y(1-x/y)dy=0

题目
求下列微分方程通解 (1+e^x/y)dx+e^x/y(1-x/y)dy=0
答案
x/y=u x=yu x‘=u+yu' 代入:
u+yu'=[e^u(u-1)]/(1+e^u)
yu'=[e^u(u-1)]/(1+e^u)-u=-2
(1+e^u)du/u=-2dy/y
ln|u|+∫e^udu/u=-2ln|y|+C
其中:x/y=u
那积分不能表示为初等函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.