设f(x)=ax^3+bx,a、b∈R,且f(2)=6,求f(-2)的值
题目
设f(x)=ax^3+bx,a、b∈R,且f(2)=6,求f(-2)的值
动点P沿边长为1的正方形ABCD的边从顶点A出发顺次经过B,C,D再回到A,设x表示点P经过的路程,y表示线段PA的长,求y关于x的函数解析式
定义在R上的函数y=f(x)满足:①f(x)+f(y)=f(x+y),②f(2)=1
f(x)在区间(0,+∞)上是增函数,如果f(x+1)+f(x)≥1,求x的取值范围
答案
设f(x)=ax^3+bx,a、b∈R,且f(2)=6,求f(-2)的值
f(-2)=a(-2)^3-2b=-(a2^3+2b)=-f(2)=-6
动点P沿边长为1的正方形ABCD的边从顶点A出发顺次经过B,C,D再回到A,设x表示点P经过的路程,y表示线段PA的长,求y关于x的函数解析式
y=x 0≤x≤1
y=√[1+(x-1)^2] 1≤x≤2
y=√[1+(x-2)^2] 2≤x≤3
y=4-x 4≤x≤4
定义在R上的函数y=f(x)满足:①f(x)+f(y)=f(x+y),②f(2)=1
f(x)在区间(0,+∞)上是增函数,如果f(x+1)+f(x)≥1,求x的取值范围
f(x)+f(y)=f(x+y)
令x=0,y=0
f(0)=0
再令x=0,y=-x
f(x)+f(-x)=f(0)=0
所以f(x)为奇函数
又因为f(x)在区间(0,+∞)上是增函数
所以f(x)在区间(-∞,+∞)上是增函数
f(x+1)+f(x)=f(2x+1)≥1=f(2)
而f(x)在区间(-∞,+∞)上是增函数
2x+1≥2
x≥1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 有一张边长为1米的正方形纸,如果在这张纸上剪4个相等并且最大的圆,这张纸的利用率是( )
- 怎么练习好口语交际?
- 盼望两个单词的词组
- △ABC面积是10平方厘米,AE=1/2AD,BD=3DC,求阴影部分面积.
- 如何区分天狼星与金星?
- 客货两车分别从甲乙两地同时相向开出,在距中点3千米处相遇,客车的速度是货车的9/10,甲乙相距多少千米?
- (X-1.8)²+2.75²=X² 求X等于多少
- 上面一个四,下面一个正,是读什么,什么意思?
- 水果店进了4箱苹果和6箱橘子,一共是270千克.每箱苹果的重量比每箱橘子重5千克.一箱苹果和一箱橘子各重多少
- 用所给动词的适当形式填空.71.Listen,the music ▲ (sound) nice.72.Why not ▲ (watch)a film with
热门考点
- 一列均速行驶的火车,从它进入600米的遂道到完全离开,共需30秒,知在遂道顶部灯线照火车5秒,问火车长度
- 168分之21化成最简分数
- 对于任意实数m,比较多项式2m的4次方--4m的平方--1和m的4次方--2m的平方--4的大小
- 抗日英雄的故事(300字以内)
- 已知 a分之1减去b分之1=3 求分式2a+ab-2b分之a-2ab-b的值.
- 结合海水资源的特点,我们从海水中提镁到底有没有实际意义,在提取过程中又会面临什么样的困难?
- 定值电阻R1:R2=1:2,当它们串联后接入电路时,其电流比是_其实际功率比是_.
- 一个数由1个一,4个百分之一和7个千分之一组成,这个数写作( ),读作( )把这个数精确到十分位是( )
- 已知正三棱锥的侧棱长为10cm,侧棱与底面所成的角等于arcsin五分之三,求这个三棱
- 五年级语文练习册,11.晏子使楚本文是按照什么顺序来写的,开头写了什么,中间写了什么,结尾写了什么.