⊙O为△ABC的内切圆,角C=90°,BO的延长线交AC于点E,BC=4,CE=1,求⊙O的半径

⊙O为△ABC的内切圆,角C=90°,BO的延长线交AC于点E,BC=4,CE=1,求⊙O的半径

题目
⊙O为△ABC的内切圆,角C=90°,BO的延长线交AC于点E,BC=4,CE=1,求⊙O的半径
答案
做ED垂直AB于D
则DE=CE=1 BD=BC=4
由角平分线定理得BC:AB=CE:AE
设AE=C=X则AD=根号(X方-1)
4:4+根号(X方-1)=1:X
解得X=1/15(舍去) X=17
则直角三角形三边长为4,18,12倍根号2
(4+18+12倍根号2)*R=4*18
R=自己算吧
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.