如果n是整数,且y=n+3n^2+2n^3,证明y是6的倍数

如果n是整数,且y=n+3n^2+2n^3,证明y是6的倍数

题目
如果n是整数,且y=n+3n^2+2n^3,证明y是6的倍数
答案
y=n(1+3n+2n^2)
=n(n+1)(2n+1)
=6(1^2+2^2+3^2+……n^2)
1^2+2^2+3^2+……n^2是正整数
所以y是6的正整数倍,即证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.