如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°.

如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°.

题目
如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°.
AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为( )
A.100° B.110° C.120° D.130°
为什么选C?求解释.
答案
∠AMN+∠ANM=120°
延长AB到A'使BA'=AB,延长AE到A''使AE=EA'',那么A'A''与BC,ED的交点即为所求的M和N,
∠AMN+∠ANM=2∠A'+2∠A''=2(180-∠BAE)=120°
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.