判断下列函数的奇偶性 f(x)=[sin(π/2+x)cos(π/2-x)tan(-x+3π)]/[sin(7π-x)tan(8π-x)]
题目
判断下列函数的奇偶性 f(x)=[sin(π/2+x)cos(π/2-x)tan(-x+3π)]/[sin(7π-x)tan(8π-x)]
答案
sin(π/2+x)=cosx,cos(π/2-x)=sinx,tan(-x+3π)=-tanx,sin(7π-x)=sinx,tan(8π-x)=-tanx
所以原式就可化简为f(x)=cosx 所以f(x)为偶函数,希望你能帮到你
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点