已知函数f(x)=lnx+2x,g(x)=a(x^2+x)

已知函数f(x)=lnx+2x,g(x)=a(x^2+x)

题目
已知函数f(x)=lnx+2x,g(x)=a(x^2+x)
若f(x)>=g(x)恒成立,求a的取值范围
答案
f(x)>=g(x) 即(lnx+2x)/(x^2+x)≥a 令h(x)=(lnx+2x)/(x^2+x)
h'(x)=(lnx-x+1)(2x+1)/(x^2+x)^2 令h'(x)=0 x=1 列表略 易知h(x)最小值为1
所以a≤1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.