高数:一:偏导数不连续也可能可微对吗?二:偏导数不存在一定不可微对吗?
题目
高数:一:偏导数不连续也可能可微对吗?二:偏导数不存在一定不可微对吗?
答案
两个结论都正确.
前者可考虑例子:
f(x,y)=(x^2+y^2)sin(1/(x^2+y^2)),当x^2+y^2>0时;
f(x,y)=0,当x^2+y^2=0时.
这个函数偏导数在(0,0)不连续,但是可微.
函数可微,则偏导数必存在,因此偏导数不存在必不可微.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点