一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体,问:其中三面都涂色的有多少个?两面都涂色的有多少个?只有一面涂色的多少个?各面都没有涂色的有多少个?
题目
一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体,问:其中三面都涂色的有多少个?两面都涂色的有多少个?只有一面涂色的多少个?各面都没有涂色的有多少个?
答案
根据以上分析:顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有12个;两面涂色;每个面的正中间的一个只有一面涂色的有6个;正方体正中心处的1个小正方体各面都没有涂色.
故:三面涂色的小正方体有8个;
两面涂色的小正方体有12个;
只有一面涂色的有6个;
各面都没有涂色的有1个.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点