已知x^2+y^2=1,则3x+4y的最小值是

已知x^2+y^2=1,则3x+4y的最小值是

题目
已知x^2+y^2=1,则3x+4y的最小值是
答案
设x=sina,b=cosa,
由sina^2+cosa^2=1,则得3x+4y=3sina+4cosa,
由三角函数公式可得:asinx+bcosy=(a^2+b^2)^(1/2)sin(x+y) 则有:
3x+4y=5sin(a+b),-1<=sinx<=1
所以其最小值为-5,最大值5.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.