设f(x2-1)=lnx2x2−2,且f[φ(x)]=lnx,求∫φ(x)dx.

设f(x2-1)=lnx2x2−2,且f[φ(x)]=lnx,求∫φ(x)dx.

题目
设f(x2-1)=ln
x
答案
t=x2-1,则x2=t+1;因此:f(x2-1)=lnx2x2−2=f(t)=lnt+1t−1即:f(x)=lnx+1x−1所以:f(φ(x))=lnφ(x)+1φ(x)−1=lnx;因此有:φ(x)+1φ(x)−1=x;解得:φ(x)=x+1x−1;∫φ(x)dx=∫x+1x−1dx=∫x...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.