设椭圆方程为(y^2)/4+x^2=1,过点M(0,1)的直线L交椭圆于点A,B,O是坐标原点,点P满足OP=1/2(OA+OB),
题目
设椭圆方程为(y^2)/4+x^2=1,过点M(0,1)的直线L交椭圆于点A,B,O是坐标原点,点P满足OP=1/2(OA+OB),
设椭圆方程为(y^2)/4+x^2=1,过点M(0,1)的直线L交椭圆于点A,B,O是坐标原点,点P满足OP=1/2(OA+OB)[其中OP,OA,OB均为向量],点N的坐标为(1/2.,1/2).当L绕点M旋转时,求:
(1)动点P的轨迹方程
(2)向量NP的绝对值的最大值与最小值
答案
(1).直线L过M(0,1)当直线L⊥x轴时:OA+OB=0,则OP=0,则P点为原点(0,0)当直线L不垂直x轴时:设L斜率为k,则直线L方程为:y=kx+1联立椭圆4x²+y²=4和直线y=kx+1,得:4x²+k²x²+1+2kx=4,即(k²...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点