等边三角形ABC的边长为a,正方形DEFG内接于△ABC,D,E分别在AB,AC上,G,F在BC上,求正方形DEFG的边长

等边三角形ABC的边长为a,正方形DEFG内接于△ABC,D,E分别在AB,AC上,G,F在BC上,求正方形DEFG的边长

题目
等边三角形ABC的边长为a,正方形DEFG内接于△ABC,D,E分别在AB,AC上,G,F在BC上,求正方形DEFG的边长
答案
解:过A作AH交BC于H点,则
AH=AB*sin60°=√3a/2
设正方形DEFG的边长=x,则
△ADE∽△ABC,底边的比=高的比
x/a=(AH-x)/AH=(√3a/2-x)/(√3a/2)
x=√3a/(2+√3)=(2√3-3)a
答:正方形DEFG的边长=(2√3-3)a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.