证明当n》2时,1+1/2+1/3+...+1/2^n》(7n+11)/12

证明当n》2时,1+1/2+1/3+...+1/2^n》(7n+11)/12

题目
证明当n》2时,1+1/2+1/3+...+1/2^n》(7n+11)/12
答案
可用数学归纳法证明:
当n=2时,左边=1+1/2+1/3+1/4=25/12,右边=(7×2+11)12=25/12.原不等式成立.
假设n=k(k≥2)时命题成立.即1+1/2+1/3+…+1/2^k≥(7k+11)/12
那么,当n=k+1时
1+1/2+1/3+…+1/2^(k+1)≥(7k+11)/12+1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)
而1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)
=1/(2^k+1)+1/(2^k+2)+…+1/[2^k+2^(k-1)]+1/[(2^k+2^(k-1)+1]+1/[(2^k+2^(k-1)+2]+…+1/2^(k+1)
≥2^(k-1)/[2^k+2^(k-1)]+2^(k-1)/2^(k+1)=7/12
于是,1+1/2+1/3+…+1/2^(k+1)≥(7k+11)/12+7/12=[7(k+1)+11]/12
所以,n=k+1时命题成立.
故对于一切n≥2,不等式1+1/2+1/3+...+1/2^n≥(7n+11)/12 都成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.