如图,在正方形ABCD中,E为AD中点,EF⊥EC交AB于F,连接FC ,求证△AEF∽△ECF

如图,在正方形ABCD中,E为AD中点,EF⊥EC交AB于F,连接FC ,求证△AEF∽△ECF

题目
如图,在正方形ABCD中,E为AD中点,EF⊥EC交AB于F,连接FC ,求证△AEF∽△ECF
答案
证明:延长BA和CE交于点G
E为AD中点
则AE=1/2AD=BC
FE⊥GC
FE是BC的垂直平分线
所以△FGE≌△FCE
∠G=∠FCE
∠G=∠FEA(等角的余角相等)
∠FEA=∠FCE
∠EAF=∠FEC
所以
△AEF∽△ECF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.