已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10. (Ⅰ)求数列{an}与{bn}的通项公式; (Ⅱ)记Tn=anb1+an-1b2+
题目
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)记Tn=anb1+an-1b2+an-2b3+…+a1bn,求Tn.
答案
(Ⅰ)设等差数列的公差为d,等比数列的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由条件a4+b4=27,s4-b4=10,得方程组2+3d+3q3=278+6d−2q3=10,解得d=3q=2,故an=3n-1,bn=2n,n∈N*.(Ⅱ)方法一,...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点