矩阵证明题 设A的平方=A,证明E+A可逆 并求出

矩阵证明题 设A的平方=A,证明E+A可逆 并求出

题目
矩阵证明题 设A的平方=A,证明E+A可逆 并求出
A^2=A
A^2-A-2E=-2E
(A-2E)(A+E)=-2E
[(2E-A)/2](E+A)=E
所以E+A的逆为(2E-A)/2
A^2-A-2E=-2E
(A-2E)(A+E)=-2E
这步怎么想出来的
怎么凑啊 关键是
答案
拿你这题来说
等式右边凑出一个k*E
等式左边凑出一个(A+E)(A+mE)
既(A+E)(A+mE)=kE
然后拆开:A^2+(m+1)A+mE-kE=0
与A^2-A=0比较系数得
m+1=-1
m-k=0
求出m=-2 k=-2即可
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.