如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD,求证:△BDE为等腰三角形.
题目
如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD,求证:△BDE为等腰三角形.
答案
证明:∵△ABC是等边三角形,D是AC中点,
∴∠ACB=60°,∠CBD=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠BCD=∠E+∠CDE=2∠E=60°,
∴∠E=30°,
∴∠E=∠CBD,
∴BD=DE,
即△BDE为等腰三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点