用拉普拉斯变换解常系数线性微分方程的初值问题,有哪些优点?

用拉普拉斯变换解常系数线性微分方程的初值问题,有哪些优点?

题目
用拉普拉斯变换解常系数线性微分方程的初值问题,有哪些优点?
答案
运用拉氏变换解常系数线性微分方程的初值问题,我认为具有如下优点:
(1)求解过程规范化,便于在工程技术中应用.
(2)因为取拉氐变换时连带初始条件,所以它比经典法(指高等数学中常微分方程的解法)使捷.
(3)当初始条件全部为零时(这在工程中是常见的),用拉氏变换求解特别简便.
(4)当方程中非齐次项(工程中称输入函数)因具跳跃点而不可微时(工程中也常见),用经典法求解是很困难的,而用拉氏变换求解却不会因此带来任何困难.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.