如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论: ①∠BOC=90°+1/2∠A;②以E为圆心,BE为半径的圆
题目
如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①∠BOC=90°+
答案
①:∠BOC=180°-(
∠ABC+
∠ACB)=180°-
(180°-∠A)=90°+
∠A.所以①正确;
②:由于∠EBO=∠OBC,∠EOB=∠OBC,所以∠EBO=∠EOB,则EB=EO,同理FO=FC;则以E为圆心,BE为半径的圆经过点O.同理,以F为圆心,CF为半径的圆也经过点O,则这两个圆外切,所以②正确;
③:连接AO,则AO也是此三角形的角平分线,则点O到AB与到AC的距离相等,则S
△AEF=S
△AOE+S
△AOF,又高相等,则等于
mn,故③错误;
④:连AO,设EF是△ABC的中位线,
∵EF‖BC,∠ABO=∠CBO,
∴OE=BE=
•AB,
∴∠AOB=90°(三角形一边上的中线等于这边的一半,是直角三角形)
同理∠AOC=90°,
∴O点应该在BC上,
EF与BC重合,
∴E、F不可能是三角形ABC的中点,即EF不可能是△ABC的中位线.
所以④正确;
故答案为:①,②,④.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点