∫﹙2,﹢∞﹚dx/[x√﹙x-1﹚] 求广义积分
题目
∫﹙2,﹢∞﹚dx/[x√﹙x-1﹚] 求广义积分
答案
令√(x-1)=t,则x=t^2+1,dx=2tdt,于是不定积分∫dx/[x√(x-1)] =∫2tdt/[(t^2+1)*t]=∫2dt/(t^2+1)=2tan^(-1) t+C=2tan^(-1) √(x-1)+C于是广义积分∫﹙2,﹢∞﹚dx/[x√﹙x-1﹚]=lim 2tan^(-1) √(x-1)-2*π/4=π-π/...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点