求数列1/2x5,1/5x8,1/8x11...,1/(3n-1)(3n+2)...的前n项和

求数列1/2x5,1/5x8,1/8x11...,1/(3n-1)(3n+2)...的前n项和

题目
求数列1/2x5,1/5x8,1/8x11...,1/(3n-1)(3n+2)...的前n项和
=1/3[1/(3n-1)-1/(3n+2)]
=1/3(1/2-1/5)+1/3(1/5-1/8)+1/3……1/3[1/(3n-1)-1/(3n+2)]
=1/3[1/2-1/5+1/5-1/8+1/8-……+1/(3n-1)-1/(3n+2)]
.
=n/[2(3n+2)]
=1/3[1/(3n-1)-1/(3n+2)]这步是如何得到的?
答案

这叫裂项求和法

基本裂项式是


如有不懂请追问

望采纳

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.