将直角坐标方程xcosa +ysina-p=0化为极坐标方程
题目
将直角坐标方程xcosa +ysina-p=0化为极坐标方程
答案
将x=pcosθ,y=psinθ代入
得:pcosθcosa+psinθsina-p=0
p[cos(θ-a)-1]=0,此即为极坐标方程
又可进一步化为:
得:p=0或cos(θ-a)-1=0
得:p=0 或θ=2kπ+a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点