求不定积分∫1/[(x^2+1)]^2dx.
题目
求不定积分∫1/[(x^2+1)]^2dx.
答案
换元法
令x=tany
则∫1/[(x^2+1)]^2dx=∫1/secy^4dtany=∫1/secy^2dy=∫cosy^2dy
==∫(cos2y+1)/2dy=y/2-sin2y/4+c
y=arctanx
所以原式=arctanx/2-sin(2arctanx)/4+c
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点