关于相似矩阵的证明

关于相似矩阵的证明

题目
关于相似矩阵的证明
A1是N阶方阵,A2是M阶方阵.证明:如果A1与B1相似,A2与B2相似,则
|A1 0|与 |B1 0| 相似
|0 A2| |0 B2|
答案
A1与B1相似,所以存在 P使得 B1=P^(-1)A1P
A1与B1相似,所以存在 Q使得 B2=Q^(-1)A2Q
取R=|P 0|
|0 Q|
由于R为准对角阵,且P,Q可逆,故R也可逆,且
R^(-1)=|P^(-1) 0|
|0 Q^(-1)|
由R^(-1)|A1 0 |R=|P^(-1) 0| |A1 0 | |P 0|=|P^(-1)A1P 0|=|B1 0|
|0 A2| |0 Q^(-1)| |0 A2| |0 Q| |0 Q^(-1)A2Q| |0 B2|
知 |A1 0|与 |B1 0| 相似
|0 A2| |0 B2|
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.