在直角梯形ABCD中 AD∥BC AB⊥BC AD=2 BC=4点E在AB上 且CE平分∠BCD DE平分∠ADC 则E到CD的距离为多少?

在直角梯形ABCD中 AD∥BC AB⊥BC AD=2 BC=4点E在AB上 且CE平分∠BCD DE平分∠ADC 则E到CD的距离为多少?

题目
在直角梯形ABCD中 AD∥BC AB⊥BC AD=2 BC=4点E在AB上 且CE平分∠BCD DE平分∠ADC 则E到CD的距离为多少?
答案
过点E作EF⊥CD于F,过点D作DH⊥BC于H,∵AD∥BC,AB⊥BC,∴∠A=∠B=90°∵CE平分∠BCD,DE平分∠ADC,∴AE=EF,BE=EF,∴EF=AE=BE=2分之一AB,∴△ADE≌△FDE,△CEF≌△CEB,∴DF=AD=2,CF=CB=4,∴CD=6,∵AB⊥BC,DH⊥BC,AD∥BC...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.