一道利用高斯公式求解第二类曲面积分的题目
题目
一道利用高斯公式求解第二类曲面积分的题目
被积项是(2xdydz+yzdzdx-z^2dxdy),S是由锥面z=(x^2+y^2)的二分之一次方 与半球面z=(2-x^2-y^2)的二分之一次方 所围成的区域边界曲面的外侧.
答案
令P=2x,Q=yz,R=-z²
∵αP/αx=2,αQ/αy=z,αR/αz=-2z
∴根据高斯公式得
原式=∫∫∫(αP/αx+αQ/αy+αR/αz)dxdydz (V是S围城的空间区域)
=∫∫∫(2-z)dxdydz
=∫dθ∫rdr∫(2-z)dz (应用柱面坐标变换)
=2π∫[2r√(2-r²)-r-2r²+r³]dr
=2π[(-2/3)(2-r²)^(3/2)-r²/2-(2/3)r³+r^4/4]│
=2π(-1/2-2/3+1/4+2/3)
=-π/2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点