在△ABC中,AB=2,BC=1,cosC=3/4. (Ⅰ)求sinA的值; (Ⅱ)求BC•CA的值.

在△ABC中,AB=2,BC=1,cosC=3/4. (Ⅰ)求sinA的值; (Ⅱ)求BC•CA的值.

题目
在△ABC中,AB=
2
,BC=1,cosC=
3
4

(Ⅰ)求sinA的值;
(Ⅱ)求
BC
CA
的值.
答案
(1)在△ABC中,由cosC=34,得sinC=74,又由正弦定理:ABsinC=BCsinA得:sinA=148.(2)由余弦定理:AB2=AC2+BC2-2AC•BC•cosC得:2=b2+1-2b×34,即b2-32b-1=0,解得b=2或b=-12(舍去),所以AC=2.所以,BC•CA...
(1)利用同角三角函数基本关系,根据cosC,求得sinC,进而利用正弦定理求得sinA.
(2)先根据余弦定理求得b,进而根据
BC
CA
=BC•CA•cos(π-C)求得答案.

正弦定理;平面向量数量积的运算.

本题主要考查了正弦定理的应用,平面向量数量积的计算.考查了学生综合运用所学知识的能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.