康托对角线法证明不可数

康托对角线法证明不可数

题目
康托对角线法证明不可数
集合A = 形式为0.a1 a2 a3 a4 的小数,a(n) = 3,4,5,6 或7,且如果n为偶数,an > a(n+1),且如果n为奇数,an < a(n+1).请用康托对角线法证明集合A不可数.
答案
对角线法是常用的,至于康托对角线法是个什么法,不清楚……对角线法一般是这么证明的:如果A可数,那么把A列出来(A={A1,A2,...},每个Ai是一个无限小数),那么我们可以找到一个A中的元素x,永远不被列到.对于奇数位,如果An(n)>=4,那么令x(n)=3;如果An(n)=3,令x(n)=4.对于偶数位,总可以取到不等于An(n),3和4的一个数字.这样,x属于A,而且x(n)不等于An(n)所以x不等于任意一个An.完毕.
当然我觉得最直观的证明是这样的:
证明A不可数:首先A包含如此的子集:偶数位为6或7,奇数位为3或4.然后这个子集可以1-1映射到形式为0.0111011101...这样的只有0和1的无穷小数(偶数位如果是6就映到0,如果是7就映成1,奇数位类似),而这相当于二进制的[0,1]区间(事实上比0-1区间还多一些东西,多了一些尾数1循环的东西),后者不可数.因此A不可数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.