过圆O:x^2+y^2=4与y轴正半轴的交点A作圆的切线l,M为l上任意一点,再过M作圆的另一切线,切点为Q,

过圆O:x^2+y^2=4与y轴正半轴的交点A作圆的切线l,M为l上任意一点,再过M作圆的另一切线,切点为Q,

题目
过圆O:x^2+y^2=4与y轴正半轴的交点A作圆的切线l,M为l上任意一点,再过M作圆的另一切线,切点为Q,
则当点M在直线上移动时,求三角形MAQ的垂心的轨迹方程.
要步骤
谢谢
答案
A(0,2).
设垂心为H(x,y),Q(x0,y0).
连结AQ,
由平面几何的切线性质知,
三角形MAQ为等腰三角形,
点H在OM上,即底边AQ的中线上.
kAQ=(y0-2)/x0,
kOM=y/x
∵AQ⊥OM
∴(y0-2)/x0= -x/y※
又x0^2+y0^2=4,
x=x0
※化简得
x^2+y^2-4y=0为所求轨迹方程.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.