求证:a2+b2+c2+d2≥ab+bc+cd+da.
题目
求证:a2+b2+c2+d2≥ab+bc+cd+da.
答案
证明:∵a2+b2≥2ab,
b2+c2≥2bc,
c2+d2≥2cd,
d2+a2≥2da,
以上不等式相加即得a2+b2+c2+d2≥ab+bc+cd+da,
当且仅当a=b=c=d时取等号.
∴a2+b2+c2+d2≥ab+bc+cd+da.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点