如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?
题目
如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?
答案
证明:OE=OF.
理由如下:
∵四边形ABCD是平行四边形,
∴OB=OD.
又∵BE⊥AC,DF⊥AC,
∴∠OFD=∠OEB.
又∠DOF=∠BOE,
∴△BOE≌△DOF.
∴OE=OF.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点